NJD35N04G, NJVNJD35N04G, NJVNJD35N04T4G

NPN Darlington Power Transistor

This high voltage power Darlington has been specifically designed for inductive applications such as Electronic Ignition, Switching Regulators and Motor Control.

Features

- Exceptional Safe Operating Area
- High VCE; High Current Gain
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These are Pb-Free Devices*

Benefits

- Reliable Performance at Higher Powers
- · Designed for Inductive Loads
- Very Low Current Requirements

Applications

- Internal Combustion Engine Ignition Control
- Switching Regulators
- Motor Controls
- Light Ballast
- Photo Flash

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	V _{CEO}	350	Vdc
Collector-Base Breakdown Voltage	V _{CBO}	700	Vdc
Collector-Emitter Breakdown Voltage	V _{CES}	700	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current Continuous Peak	I _C	4.0 8.0	Adc
Base Current	I _B	0.5	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	45 0.36	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

DARLINGTON POWER TRANSISTORS 4 AMPERES 350 VOLTS 45 WATTS

DPAK CASE 369C STYLE 1

MARKING DIAGRAM

Y = Year
WW = Work Week
NJD35N04 = Device Code
G = Pb-Free Device

ORDERING INFORMATION

Device	Package	Shipping [†]
NJD35N04G	DPAK (Pb-Free)	75 Units / Rail
NJVNJD35N04G	DPAK (Pb-Free)	75 Units / Rail
NJD35N04T4G	DPAK (Pb-Free)	2,500 / Tape & Reel
NJVNJD35N04T4G	DPAK (Pb-Free)	2,500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NJD35N04G, NJVNJD35N04G, NJVNJD35N04T4G

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance Junction-to-Case Junction-to-Ambient	$egin{array}{c} {\sf R}_{ heta {\sf JC}} \ {\sf R}_{ heta {\sf JA}} \end{array}$	2.78 71.4	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	<u>, </u>				•
Collector-Emitter Sustaining Voltage (I _C = 10 mA, L = 10 mH)	V _{CEO(sus)}	350	_	_	V
Collector Cutoff Current (V_{CE} = 500 V) (I_B = 0) (V_{CE} = 500 V, T_C = 125°C)	Ices	_ _	-	50 250	μΑ
Collector Cutoff Current (V_{CE} = 250 V) (I_{B} = 0) (V_{CE} = 200 V, T_{C} = 125°C)	I _{CEO}	- -		50 250	μΑ
Emitter Cutoff Current (V _{BE} = 5.0 Vdc)	I _{EBO}	_	-	5.0	μΑ
ON CHARACTERISTICS	,		1	•	
Collector–Emitter Saturation Voltage (I_C = 2.0 A, I_B = 20 mA) (I_C = 2.0 A, I_B = 20 mA 125°C)	V _{CE(sat)}	- -	- -	1.5 1.5	V
Base–Emitter Saturation Voltage (I_C = 2.0 A, I_B = 20 mA) (I_C = 2.0 A, I_B = 20 mA 125°C)	V _{BE(sat)}	- -	- -	2.0 2.0	V
Base–Emitter On Voltage $(I_C = 2.0 \text{ A}, V_{CE} = 2.0 \text{ V})$ $(I_C = 2.0 \text{ A}, V_{CE} = 2.0 \text{ V}] 25^{\circ}\text{C})$	V _{BE(on)}	- -	- -	2.0 2.0	V
DC Current Gain $(I_C = 2.0 \text{ A}, V_{CE} = 2.0 \text{ V})$ $(I_C = 4.0 \text{ A}, V_{CE} = 2.0 \text{ Vdc})$	h _{FE}	2000 300	_ _	- -	_
DYNAMIC CHARACTERISTICS		!		!	ļ
Current-Gain - Bandwidth Product (I _C = 2.0 A, V _{CE} = 10 V, f = 1.0 MHz)	f _T	90	-	_	MHz
Output Capacitance (V _{CB} = 10 V, I _E = 0, f = 0.1 MHz)	C _{ob}	-	60	-	pF
SWITCHING CHARACTERISTICS	•				
V_{CC} = 12 V, V_{clamp} = 250 V, L = 4 mH I_{C} = 2 A, I_{B1} = 20 mA, I_{B2} = -20 mA	t _s	- -	18 0.8	_ _	μSec
			1		<u> </u>

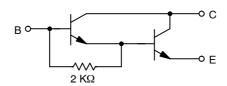


Figure 1. Darlington Circuit Schematic

NJD35N04G, NJVNJD35N04G, NJVNJD35N04T4G

TYPICAL CHARACTERISTICS

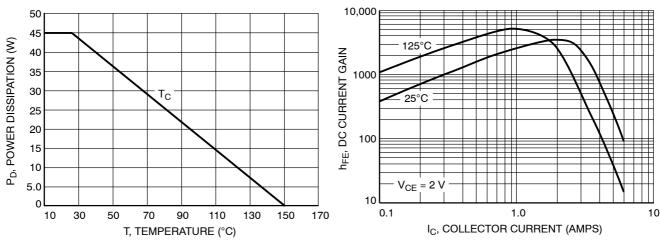


Figure 2. Power Derating

Figure 3. DC Current Gain

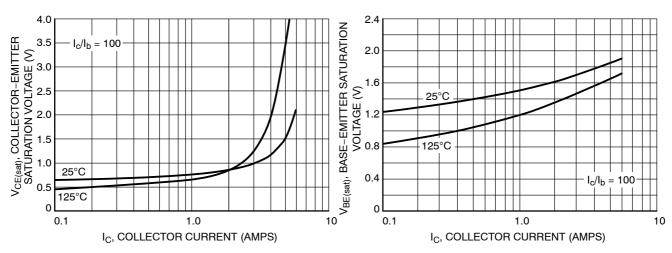


Figure 4. Collector-Emitter Saturation Voltage

Figure 5. Base-Emitter Saturation Voltage

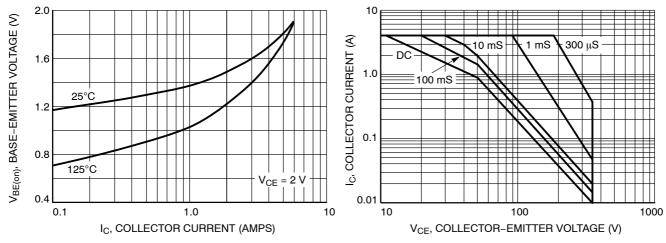


Figure 6. Base-Emitter Voltage

Figure 7. Forward Bias Safe Operating Area (FBSOA)

ROTATED 90° CW

DPAK (SINGLE GAUGE) CASE 369C ISSUE F

DATE 21 JUL 2015

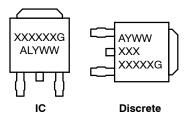
- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCHES.

 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS PAD 12 and 7.

- MENSIONS b3, L3 and Z.


 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

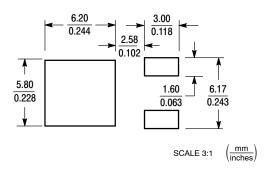
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114	REF	2.90 REF	
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location


= Wafer Lot L Υ = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

SCALE 1:1 Α - h3 В L3 Z ∩ DETAIL A NOTE 7 c → **BOTTOM VIEW** b2 е **SIDE VIEW** ⊕ 0.005 (0.13) M C **TOP VIEW** Z Ħ L2 GAUGE C SEATING PLANE **BOTTOM VIEW** Α1 ALTERNATE CONSTRUCTIONS **DETAIL A**

STYLE 1: PIN 1. BASE 2. COLLE 3. EMITTI 4. COLLE	ER 3.		STYLE 3: PIN 1. ANOE 2. CATH 3. ANOE 4. CATH	DE ODE DE	TYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE	STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE
STYLE 6: PIN 1. MT1 2. MT2 3. GATE 4. MT2	STYLE 7: PIN 1. GATE 2. COLLECT 3. EMITTER 4. COLLECT	OR 2	E 8: 1. N/C 2. CATHODE 3. ANODE 4. CATHODE	3. F		STYLE 10: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. ANODE

SOLDERING FOOTPRINT*

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative